Conformal Maps and Minimal Surfaces
نویسنده
چکیده
منابع مشابه
On Conformal Biharmonic Immersions
This paper studies conformal biharmonic immersions. We first study the transformations of Jacobi operator and the bitension field under conformal change of metrics. We then obtain an invariant equation for a conformal biharmonic immersion of a surface into Euclidean 3-space. As applications, we construct a 2-parameter family of non-minimal conformal biharmonic immersions of cylinder into R and ...
متن کاملOn the Maximal Number of Exceptional Values of Gauss Maps for Various Classes of Surfaces
The main goal of this paper is to reveal the geometric meaning of the maximal number of exceptional values of Gauss maps for several classes of immersed surfaces in space forms, for example, complete minimal surfaces in the Euclidean three-space, weakly complete improper affine spheres in the affine three-space and weakly complete flat surfaces in the hyperbolic three-space. For this purpose, w...
متن کاملBumpy Metrics and Closed Parametrized Minimal Surfaces in Riemannian Manifolds
The purpose of this article is to study conformal harmonic maps f : Σ→M , where Σ is a closed Riemann surface and M is a compact Riemannian manifold of dimension at least four. Such maps define parametrized minimal surfaces, possibly with branch points. We show that when the ambient manifold M is given a generic metric, all prime closed parametrized minimal surfaces are free of branch points, a...
متن کاملBumpy Riemannian Metrics and Closed Parametrized Minimal Surfaces in Riemannian Manifolds∗
This article is concerned with conformal harmonic maps f : Σ → M , where Σ is a closed Riemann surface and M is a compact Riemannian manifold of dimension at least four. We show that when the ambient manifold M is given a generic metric, all prime closed parametrized minimal surfaces are free of branch points, and are as Morse nondegenerate as allowed by the group of complex automorphisms of Σ.
متن کاملAN ANALOGUE OF MINIMAL SURFACE THEORY IN SL(n,C)/ SU(n)
We shall discuss the class of surfaces with holomorphic right Gauss maps in non-compact duals of compact semi-simple Lie groups (e.g. SL(n,C)/ SU(n)), which contains minimal surfaces in Rn and constant mean curvature 1 surfaces in H3. A Weierstrass type representation formula and a Chern-Osserman type inequality for such surfaces are given. Introduction Surfaces of constant mean curvature one (...
متن کامل